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Conductance length autocorrelation in quasi
one-dimensional disordered wires

Klaus Frahm† and Axel Müller-Groeling‡
Service de Physique de l’État condenśe, CEA Saclay, 91191 Gif-sur-Yvette, France

Received 11 January 1996, in final form 24 May 1996

Abstract. Employing techniques recently developed in the context of the Fokker–Planck
approach to electron transport in disordered systems, we calculate the conductance length
correlation function〈δg(L)δg(L + 1L)〉 for quasi one-dimensional 1D wires. Our result is
valid for arbitrary lengthsL and1L. In the metallic limit the correlation function is given
by a squared Lorentzian. In the localized regime it decays exponentially in bothL and1L.
The correlation length is proportional toL in the metallic regime and saturates at a value
approximately given by the localization lengthξ asL � ξ .

1. Introduction

In the last 15 years two powerful approaches to calculate the electron transport properties
of quasi 1D disordered wires have been developed: a method based on the nonlinearσ

model by Efetov and Larkin [1] and a Fokker–Planck approach by Dorokhov [2] and Mello
et al [3]. Both methods are non-perturbative in the sense that they do not assume that the
system size is small compared with the localization lengthξ . Therefore, the full range from
the metallic to the localized regime can be described within these two frameworks. Very
recently it has been shown [4] that both approaches are in fact equivalent, despite their
considerable technical dissimilarity. Apart from the important conceptual point of unifying
our theoretical understanding of quasi 1D wires, this proof of equivalence enables us to
choose from among the available techniques the more suitable one for a given problem.
Combining the results obtained within both approaches, our knowledge about quasi 1D
transport is very advanced, some would say almost complete. We mention only a few
important facts. Both the conductanceg and its variance var(g) have been calculated
for arbitrary system length and for all three symmetry classes [5, 4]. The probability
distribution function for the generalized eigenvalues of the transfer matrix is known exactly
in the unitary case [6] and the correspondingn-point correlation functions are also under
control [7]. However, in spite of all this progress, there are still a few unsolved problems.
Probably one of the most important questions concerns the magnetic field correlation
function 〈δg(L,B)δg(L,B + 1B)〉. This quantity cannot be formulated within the so-
called ‘minimal’ σ model, i.e. the supermatrix space necessary to describe this correlation
function is larger than in previous non-perturbative calculations. The technical difficulties
to treat largerσ models exactly have so far been insurmountable. In the Fokker–Planck
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approach, on the other hand, the question is how to incorporate the magnetic field in the
theoretical formulation. This more conceptial problem also still awaits a solution.

In this paper we calculate the conductancelength correlation function〈δg(L)δg(L +
1L)〉 for all L and1L using the Fokker–Planck technique. In this case the situation is
more favourable than for the magnetic field correlation function since the system length—
unlike the magnetic field—is the fundamental parameter of the whole approach. Therefore
it is possible to perform an exact calculation of a quantity that cannot be formulated within
the framework of the minimalσ model. We briefly summarize our results. In the metallic
limit L,1L � ξ the length correlation function is given by a squared Lorentzian, while it
decays exponentially as a function of bothL and1L in the localized regimeL,1L � ξ .
As L increases from the metallic to the localized limit the correlation length in1L, which
is proportional toL for L � ξ , saturates at a constant value equal toξ . This explicitly
confirms the view that a strongly localized wire is composed of independently fluctuating
segments of sizeξ . In a recent paper [8], Fenget al have argued that, in the localized
regime, the conductance fluctuations induced by the motion of a single impurity should
be universal, 〈[ln g/g′]2〉 ≈ 1. Here,g and g′ are the conductances before and after the
impurity has moved, respectively. The main qualitative assumption necessary to arrive at
this conclusion was precisely the decomposition into segments, which is rigorously derived
in our paper. Therefore, the universality of the conductance fluctuations in the localized
regime can now be regarded as analytically established in quasi 1D wires. The arguments in
[8], however, go beyond the quasi 1D case and suggest, supported by numerical simulations,
that this universality extends also to two and three dimensions.

The conductance length autocorrelation function is, in principle, accessible by
experiments in mesoscopic nanostructures. For this, one has to fabricate a ‘quasi one-
dimensional’ quantum wire with several contacts at discrete distancesLj . Using such a
geometry, one can measure the conductance as a function ofLj (and of the magnetic field
B), where the disorder realization isidentical for the common parts of the wire. One has to
take into account, however, that in these multi-lead devices phase coherent scattering in the
attached contact arms typically influences the experimental result. As usual, the statistical
average necessary to calculate the mean conductance or the length autocorrelation function
may be replaced by an average over a suitable range of the magnetic field.

Our paper is organized as follows. After collecting a few important known results
concerning the Fokker–Planck approach in section 2, we develop the technical framework
for the length correlation function of an arbitrary linear statistic in section 3. In section 4
we derive a (complex) expression for the special case of the conductance length correlation
function. Sections 5–7 are devoted to the metallic, localized and crossover regimes,
respectively. In section 8 we give a short summary and make some concluding remarks.
Considerations of a purely technical nature have been deferred to appendices A to E.

2. Known results and basic terminology

In the Fokker–Planck approach [2, 3, 9–11] the transmission properties of a quasi 1D wire
with N conducting channels and lengthL are characterized byN generalized eigenvalues
λi > 0 (i = 1, . . . , N). They parametrize the radial part [3, 12] of the transfer matrix. With
Ti = (1 + λi)

−1 the transmission coefficients, the conductanceg is given by the Landauer
formula

g =
N∑
i=1

Ti =
N∑
i=1

1

1 + λi
. (1)
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The multiplicative combination law for the transfer matrix yields the following Fokker–
Planck equation [2, 3, 11] for the probability distributionp(λ̂, t) of the wire:

∂tp(λ̂, t) = 1p(λ̂, t). (2)

Here,λ̂ = (λ1, . . . , λN) is the collection of eigenvaluesλi , t = L/2ξ the length of the wire
measured in units of (twice) the localization lengthξ , and1 the radial part of the Laplacian
on the transfer matrix space,

1 = 4
∑
i

∂λi λi(1 + λi)J (λ̂)∂λi J
−1(λ̂) (3)

J (λ̂) =
∏
i>j

|λi − λj |β. (4)

We haveξ = (βN + 2 − β)l, whereβ = 1, 2, 4 corresponds to the orthogonal, unitary,
and symplectic symmetry class, respectively, andl is the elastic mean free path. The usual
initial condition for (2) is given byp(λ̂, 0) = δ(λ̂), corresponding to ideal transmission
Ti = 1 for a wire of zero length. In the unitary case (to which we restrict our attention
in this paper) the Fokker–Planck equation (2) has been solved exactly [6] by means of a
Sutherland transformation. Subsequently, then-point correlation functions of theλi (at a
fixed value of the lengthL) have been calculated [7] for arbitraryN andL. In the following
we summarize some of the results in [6, 7] for further reference.

The probability distributionp(λ̂, t) can be expressed [6] in terms of a certain ‘many-
body’ Green functionG(µ̂, λ̂; t)

p(λ̂, t) =
∫

dNµ̂G(µ̂, λ̂; t)p(µ̂, 0) = lim
µ̂→0

G(µ̂, λ̂; t). (5)

This Green function is given by

G(µ̂, λ̂; t) = 1

N !

ρ(λ̂)

ρ(µ̂)
det((g(µi, λj ; t)) eCN t (6)

where

ρ(λ̂) =
∏
i>j

(λi − λj ) CN = −
N−1∑
n=0

εn εn = (1 + 2n)2 (7)

andg(µ, λ; t) is a ‘one-body’ Green function corresponding to the differential operator

D(λ) = −(4∂λλ(1 + λ)∂λ + 1). (8)

We have

∂tg(µ, λ; t) = −D(λ)g(µ, λ; t) = −D(µ)g(µ, λ; t) g(µ, λ; 0) = δ(µ− λ). (9)

The operatorD(λ) has a continuous set of eigenfunctions

ψk(λ) = P 1
2 (ik−1)(1 + 2λ) = F( 1

2 + i 1
2k,

1
2 − i 1

2k; 1; −λ) (10)

with eigenvaluesk2, i.e. D(λ)ψk(λ) = k2ψk(λ). Here,P 1
2 (ik−1)

denotes the generalized

Legendre function, which can be expressed in terms of the hypergeometric function
F(a, b; c; z) as indicated above [13]. The expansion ofg(µ, λ; t) in terms of these
eigenfunctions is given by [6]

g(µ, λ; t) =
∫ ∞

0
dk 1

2k tanh( 1
2πk)ψk(µ)ψk(λ) e−k2t . (11)
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Using (6) and (11) the limit in (5) can be evaluated [6]. The resulting expression can be
rewritten [7] in the very useful form

p(λ̂, t) = 1

N !
det(Qn−1(λj ; t)) det(hm−1(λi; t)) (12)

where(n,m = 0, 1, . . . , N − 1)

Qn(λ; t) = Pn(1 + 2λ) e−εnt (13)

hm(λ; t) =
∫ ∞

0
dk 1

2k tanh( 1
2πk)Lm(k

2)ψk(λ) e−k2t (14)

Lm(z) =
N−1∏

l=0,(l 6=m)

z − (−εl)
(−εm)− (−εl) . (15)

The Legendre polynomialPn(1 + 2λ) in (13) is also an eigenfunction ofD(λ). The
corresponding eigenvalue is−εn. The Pn(1 + 2λ) do not contribute in the expansion
(11) because they are not normalizable in the range of integrationλ > 0. The advantage of
the representation (12) is due to the biorthogonality relation [7]∫ ∞

0
dλQn(λ; t)hm(λ; t) = δnm (16)

which was the key to calculating then-point correlation functions [7].
In the following, we will also need the two properties∫ ∞

0
dµhm(µ; t)g(µ, λ;1t) = hm(λ; t +1t) (17)∫ ∞

0
dλg(µλ;1t)Qn(λ; t +1t) = Qn(µ; t). (18)

These identities can be verified using (9), (14) and the fact that∂tQn(λ; t) = D(λ)Qn(λ; t)
(see (13)).

3. Density–Density correlation function for the eigenvalues

We are finally interested in calculating the conductance length correlation function
〈δg(L)δg(L+1L)〉. To this end we need to know the joint probability density function of
finding a certain fixed set of eigenvaluesµ̂ at t and another fixed setλ̂ at t+1t . Obviously,
this density is given by

p2(µ̂, t; λ̂, t +1t) = p(µ̂; t)G(µ̂, λ̂;1t) (19)

since the conditional probability density of finding a transitionµ̂ → λ̂ in a length interval
1t is precisely given by the propagatorG(µ̂, λ̂;1t).

We are now going to formulate a slightly more general problem than the one we wish to
solve in the end. LetA1,2 = ∑

i a1,2(λi) be two arbitrary linear statistics of the eigenvalues
λi . Then the length correlation function of these two quantities can be written as

〈A1(t)A2(t +1t)〉 =
∫ ∞

0
dλ1

∫ ∞

0
dµ1a1(λ1)a2(µ1)R1,1(µ1, t; λ1; t +1t). (20)

The functionR1,1(µ1, t; λ1; t+1t) is the probability density of finding one eigenvalue equal
to µ1 at t and one eigenvalue equal twoλ1 at t + 1t . It arises from the joint probability
density (19) upon integrating out all the remaining eigenvalues,

R1,1(µ1, t; λ1; t +1t) = N2
∫

dµ2 . . .dµN dλ2 . . .dλN p2(µ̂, t; λ̂, t +1t). (21)
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Using the fact that det(Qn−1(λj ; t)) = constantρ(λ̂) eCN t and with the help of (6), (12),
and (19) we can re-expressp2 as

p2(µ̂, t; λ̂, t +1t) = 1

N !2
det(hm−1(µi; t)) det(g(µi, λj ;1t) det(Qn−1(λj ; t +1t)). (22)

Rather than calculating all the integrations in (21) explicitly, we will employ a generating
functional [14] to calculate the density (21). Letµ1,2(λ) be arbitrary functions of the
eigenvalueλ. Following [14] we define the functional

L[u1, u2] =
〈 ∏

i

u1(λi(t))
∏
j

u2(λj (t +1t))

〉
(23)

=
∫

dNµ̂
∫

dN λ̂
∏
i

(u1(µi)u2(λi))p2(µ̂, t; λ̂, t +1t)

so that the correlation function (20) can be expressed as

〈A1(t)A2(t +1t)〉 = ∂z1∂z2L[1 + z1a1, 1 + z2a2]|z1,2=0. (24)

Inserting (22) in (23) we find after some algebra involving transformations of the various
determinants

L[u1, u2] = det(Mmn[u1, u2]) (25)

with theN ×N matrix

Mmn[u1, u2] =
∫ ∞

0
dµ

∫ ∞

0
dλhm(µ; t)g(µ, λ;1t)Qn(λ; t +1t)u1(µ)u2(λ) (26)

depending linearly onu1 andu2. To calculate the derivatives in (24) we notice that due to
(16)–(18) we haveMmn[1, 1] = δnm so that (in matrix notation)

M[1 + z1a1, 1 + z2a2] = 1 + z1M[a1, 1] + z2M[1, a2] + z1z2M[a1, a2]

≡ 1 +X. (27)

To expand the determinant in (25) we employ the relation

det(1 +X) = exp(tr ln(1 +X)) = 1 + tr(X)+ 1
2(tr(X)

2 − tr(X2))+ · · · . (28)

Finally, using (25), (27) and (28) in (24) we can perform the derivatives with respect to the
auxiliary variablesz1 andz2 and arrive at

〈A1(t)A2(t +1t)〉 = tr(M[a1, a2])+ tr(M[a1, 1]) tr(M[1, a2])− tr(M[a1, 1]M[1, a2]).

(29)

This result can now be straightforwardly compared with the expression (20) to identify the
two-point densityR1,1(µ, t; λ, t + 1t). To write R1,1 in a compact and appropriate form
we define the function

KN(λ, t1;µ, t2) =
N−1∑
m=0

Qm(λ; t1)hm(µ; t2) (30)

in terms of which the one-point densityR1(µ, t) reads [7]

R1(µ; t) = KN(µ, t;µ, t). (31)

This quantity occurs in the calculation of simple averages of a linear statistic such as

〈A1(t)〉 = ∂z1L[1 + z1a1, 1]|z1=0 = tr(M[a1, 1]) =
∫ ∞

0
dµa1(µ)R1(µ; t). (32)
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With the definitions (30) and (31) and taking into account the relations (16)–(18) the
comparison between (20) and (29) results in

R1,1(µ, t; λ; t +1t) = R1(µ; t)R1(λ; t +1t)

+KN(λ, t +1t;µ, t)[g(µ, λ;1t)−KN(µ, t; λ, t +1t)]. (33)

To summarize the result of this section, the correlator ofA1(t) andA2(t +1t) is given by

〈δA1(t)δA2(t +1t)〉 = 〈A1(t)A2(t +1t)〉 − 〈A1(t)〉〈A2(t +1t)〉
=

∫ ∞

0
dλ

∫ ∞

0
dµa1(λ)a2(µ)S(µ, t; λ; t +1t) (34)

where we have introduced the density–density correlation for the generalized eigenvalues
of the transfer matrix

S(µ, t; λ; t +1t) = KN(λ, t +1t;µ, t)[g(µ, λ;1t)−KN(µ, t; λ, t +1t)]. (35)

In the next section we derive an explicit expression for the conductance length correlation
function starting from (34) and (35).

4. Conductance length correlation function

The correlator〈δg(t)δg(t +1t)〉 is a special case of (34), obtained by choosinga1,2(λ) =
(1 + λ)−1,

〈δg(t)δg(t +1t)〉 =
∫ ∞

0
dλ

∫ ∞

0
dµ

1

1 + µ

1

1 + λ
S(µ, t; λ; t +1t). (36)

The evaluation of this expression is a little involved and makes use of a few mathematical
identities, which we state as we go along. To begin with, inserting (35) in (36) we have
〈δg(t)δg(t +1t)〉 = C1 + C2, where,

C1 =
∫ ∞

0
dλ dµ

1

1 + λ

1

1 + µ
KN(λ, t +1t;µ, t)g(µ, λ;1t) (37)

C2 = −
∫ ∞

0
dλ dµ

1

1 + λ

1

1 + µ
KN(λ, t +1t;µ, t)KN(µ, t; λ, t +1t). (38)

The second contribution,C2, is the easier one to calculate. Replacing theKN in (38) by
the right-hand side of (30) one realizes that the relevant remaining integral is given by∫

dµ
1

1 + µ
hm(µ, t)Qm′(µ, t). (39)

Using the expansion (see appendix A)

1

1 + λ
Qm(1 + 2λ) = (−1)m e−εmt

(
1

1 + λ
+

m−1∑
l=0

aml eεl tQl(1 + 2λ)

)
(40)

aml = 2(−1)l+1(1 + 2l)
m∑

ν=l+1

1

ν
(aml = 0 for l > m) (41)

the abbreviation

Fm(t) =
∫ ∞

0
dµ

1

1 + µ
hm(µ; t) (42)

and the biorthogonality relation (16), it is not difficult to see that∫ ∞

0
dµ

1

1 + µ
hm(µ; t)Ql(µ; t) = (−1)l e−εl tFm(t)+ (−1)lalm e(εm−εl )t (43)
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and hence

C2 = −
( N−1∑
m=0

(−1)m e−εm(t+1t)Fm(t)
)( N−1∑

l=0

(−1)l e−εl tFl(t +1t)

)

−
N−1∑
m,l=0

(−1)m+laml(Fm(t +1t) e−εl1t−εmt + Fm(t) e−εm(t+1t)+εl1t ). (44)

The slightly more complicated contributionC1 can be evaluated as follows. We again
replaceKN by the right-hand side of (30) and employ the decomposition (40), so that
C1 = C3 + C4 with

C3 =
N−1∑
m=0

(−1)m e−εm(t+1t)
∫ ∞

0
dλ dµ

1

1 + λ

1

1 + µ
hm(µ; t)g(µ, λ;1t) (45)

C4 =
N−1∑
m,l=0

(−1)m e(εl−εm)(t+1t)aml
∫ ∞

0
dµ

1

1 + µ
hm(µ; t)Ql(µ; t). (46)

To simplify (46) we have taken advantage of (18). Using the decomposition (40) in (46)
and recalling (16) we get

C4 =
N−1∑
m,l=0

(−1)m+laml eεl1t−εm(t+1t)Fm(t). (47)

Next, to evaluateC3 we insert the relations (11) and (14) in (45) to get

C3 =
N−1∑
m=0

∫ ∞

0
dk1

1
2k1 tanh( 1

2πk1)Lm(k
2
1)(−1)m e−εm(t+1t) e−k2

1t

×
∫ ∞

0
dk2

1
2k2 tanh( 1

2πk2) e−k2
21t

∫ ∞

0
dµ

1

1 + µ
ψk1(µ)ψk2(µ)

×
∫ ∞

0
dλ

1

1 + λ
ψk2(λ). (48)

For further progress we need the integral∫ ∞

0
dλ(1 + λ)−αψk(λ) = 0(− 1

2 + α − i 1
2k)0(− 1

2 + α + i 1
2k)

0(α)2
(49)

as derived in appendix B for arbitrary complexα with Re(α) > 1
2 and

Lm(k
2) = (−1)m4(1 + 2m)

k2 + εm

a(N,m, k)

0( 1
2 − i 1

2k)0(
1
2 + i 1

2k)

a(N,m, k) = 0(N + 1
2 + i 1

2k)0(N + 1
2 − i 1

2k)

0(N −m)0(N +m+ 1)

(50)

which follows by a straightforward calculation from (15). Furthermore we notice that the
functionFm(t) defined in (42) can be written by virtue of (14), (49), and (50) as

Fm(t) = (−1)m4(1 + 2m)
∫ ∞

0
dk 1

2k tanh( 1
2πk)

a(N,m, k)

k2 + εm
e−k2t . (51)

After all these steps〈δg(t)δg(t+1t)〉 is expressed as the sum ofC2, C3 andC4 as given in
(44), (48) and (47), respectively, after taking into account the relations (49)–(51). Obviously,
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a simplification of the notation is called for. Let us, therefore, define the symbol [. . .](k,m)t

by

[f (k,m)](k,m)t =
N−1∑
m=0

∫ ∞

0
dk 1

2k tanh( 1
2πk)

4(1 + 2m)a(N,m, k)

k2 + εm
{f (k,m)} e−(k2+εm)t (52)

with f (k,m) an arbitrary function ofk andm. With this notation the conductance length
correlation function is given by

〈δg(t)δg(t +1t)〉 = [S1(k,1t)e−εm1t ](k,m)t − [S2(m,1t)e−k21t ](k,m)t

−[e−εm1t ](k,m)t [e−k21t ](k,m)t (53)

with

S1(k,1t) = 1

0( 1
2 − i 1

2k)0(
1
2 + i 1

2k)

∫ ∞

0
dµ
ψk(µ)

1 + µ

∫ ∞

0
dλ
g(µ, λ;1t)

1 + λ

=
∫ ∞

0
dk̃
k̃

2
tanh

(
πk̃

2

)
0( 1

2 − i 1
2 k̃)0(

1
2 + i 1

2 k̃)

0( 1
2 − i 1

2k)0(
1
2 + i 1

2k)
e−k̃21tI (k, k̃)

(54)

S2(m,1t) =
m−1∑
l=0

aml(−1)l e−εl1t = −2
m∑
ν=1

1

ν

ν−1∑
l=0

(1 + 2l) e−εl1t (55)

and the abbreviation

I (k, k̃) =
∫ ∞

0
dµ

1

1 + µ
ψk(µ)ψk̃(µ). (56)

In general, the summations and integrations in (53) have to be carried out numerically. The
most difficult task is the evaluation of (56). In appendix C we derive an expression for
I (k, k̃) which allows for an efficient numerical treatment. For completeness, we mention
that the average conductance can be calculated from (32) and is given by [7]

〈g(t)〉 = [1](k,m)t . (57)

In the limiting cases of a metallic wire (N → ∞, t � 1) and of a localized wire (t � 1)
further analytical progress in the calculation of the conductance length correlation function
(53) is possible. The next two sections deal with these two limits, respectively.

5. Metallic regime

In this section we show that in the metalic limitt � 1 and for large channel numbers
N → ∞ the conductance length correlation function is given by a squared Lorentzian, i.e.

〈δg(t)δg(t +1t)〉 = 1

15

1

(1 +1t/t)2
+ O(t). (58)

While this result is rather simple its derivation requires considerable effort. We begin by
observing that forN → ∞ the coefficienta(N,m, k) (see(50)) tends to unity [13] so that
the following decomposition rule for the symbol [. . .](k,m)t holds:

(−∂t )[f1(k)f2(m)]
(k,m)
t = [f1(k)]

(k)
t [f2(m)]

(m)
t . (59)
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Here,f1(k) andf2(m) are arbitrary functions and we have introduced the independentk-
andm-‘averages’:

[f1(k)]
(k)
t =

∫ ∞

0
dkk tanh( 1

2πk) e−k2t {f1(k)} (60)

[f2(m)]
(m)
t =

∞∑
m=0

2(1 + 2m) e−εmt {f2(m)}. (61)

Our derivation of (58) relies essentially on the smallt behaviour of the quantities [1](k)t and
[1](m)t , which will shortly be seen to become important,

[1](k)t = 1

2t
(1 − 1

3t + 7
30t

2)+ O(t2) (62)

[1](m)t = 1

2t
(1 + 1

3t + 7
30t

2)+ O(t2)+ O(e−π2/(4t)). (63)

These expansions are derived to all orders int appendix D. In (63) we have also indicated
the presence ofnon-analyticalcontributions.

Let us first consider the case1t = 0, i.e. the case of universal conductance fluctuations.
Using (9), (11), (54) and (55) one can show thatS1(k, 0) = 1

4(1 + k2) and S2(m, 0) =
−m(m− 1) = 1

4(1 − εm). Hence we have from (53)

〈δg2(t)〉 = 1
4[k2 + εm](k,m)t − ([1](k,m)t )2 = 1

4[1](k)t [1](m)t − ([1](k,m)t )2. (64)

With the help of the expansions (62), (63) and using (59) we obtain

[1](k)t [1](m)t = 1

4t2
+ 4

45 + O(t2) (65)

[1](k,m)t = −
∫

dt ([1](k)t [1](m)t ) = 1

4t
− 4

45t + O(t3). (66)

(We omit a formal proof that the integration constant in (66) is zero. A non-zero integration
constant contradicts the fact that〈δg(t)2〉 = O(1) in the metallic regime.) Inserting (65)
and (66) in (64) we find the well known result

〈δg2(t)〉 = 1
15 + O(t2). (67)

As a side remark we mention that we have verified up toO(t22) (using computer algebra
and higher-order terms in (62) and (63), see appendix D) that the corrections to〈δg(t)2〉
in (67) are even int with positive coefficients. This shows explicitly that the non-analytic
corrections indicated in (63) are vital for the onset of localization.

Now we have to generalize our treatment to the case1t > 0. We define a new variable
x by 1t = tx and will only keep the lowest relevant order int but all orders inx. The
expansions ofS1(k,1t) andS2(m,1t) in powers of1t read (see appendix E)

S1(k,1t) =
∞∑
n=0

(−1t)n
n!

(−1)nrn+1(−k2) (68)

S2(m,1t) =
∞∑
n=0

(−1t)n
n!

rn+1(εm) (69)

wherern+1(z) is a polynomial of degreen+1 in the variablez. In appendix E, we calculate
the first three coefficientsan, bn, cn in

rn+1(z) = anz
n+1 + bnz

n + cnz
n1 + · · · (70)
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with the result

an = − 1

4(n+ 1)2
(n > 0)

bn =


(2n+ 1)2

12n(n+ 1)
(n > 1)

1
4 (n = 0)

cn =


− (2n+ 1)(2n− 1)(12n2 − 5)

180(n+ 1)(n− 1)
(n > 2)

− 5
16 (n = 1)

0 (n = 0)

.

(71)

From (68)–(70) it is clear that we will need the following type of moments

[(k2)n](k)t = (−∂t )n[1](k)t = n!

2tn+1
− 1

6δn,0 + 7
60(δn,0t − δn,1)+ O(t2−n) (72)

[εnm](m)t = (−∂t )n[1](k)t = n!

2tn+1
+ 1

6δn,0 + 7
60(δn,0t − δn,1)+ O(t2−n) (73)

which have been calculated using (62) and (63). Combining (68) and (69) with (72) and
(73) we obtain

[S1(k,1t)]
(k)
t = − 1

t2
â

(
1t

t

)
+ 1

t
b̂

(
1t

t

)
− ĉ

(
1t

t

)
+ O(t) (74)

[S2(m,1t)]
(m)
t = + 1

t2
â

(
1t

t

)
+ 1

t
b̂

(
1t

t

)
+ ĉ

(
1t

t

)
+ O(t) (75)

with

â(x) = 1
2

∞∑
n=0

(n+ 1)an(−x)n = − 1

8x
ln(1 + x) (76)

b̂(x) = 1
2

∞∑
n=0

bn(−x)n = 1

6(1 + x)
− 1

24

(
1 + 1

x

)
ln(1 + x) (77)

ĉ(x) = 1
6b0 − 7

60a0 + 1
2

∞∑
n=1

1

n
cn(−x)n (78)

= 1

10
+ 7x

45
− 4x2

15(1 + x)
+ 2x3

15(1 + x)2
−

(
1

72
+ 7

240x
+ 7x

240

)
ln(1 + x).

With the help of the decomposition rule (59) we have

(−∂t )〈δg(t)δg(t +1t)〉 = {[S1(k,1t)]
(k)
t − [e−k21t ](k,m)t [1](k)t }[e−εm1t ](m)t

−{[S2(m,1t)]
(m)
t + [e−εm1t ](k,m)t [1](m)t }[e−k21t ](k)t . (79)

To proceed we need the following relations

[e−k21t ](k)t = [1](k)t+1t = 1

2(t +1t)
− 1

6 + 7
60(t +1t)+ · · · (80)

[e−εm1t ](m)t = [1](m)t+1t = 1

2(t +1t)
+ 1

6 + 7
60(t +1t)+ · · · (81)
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[e−k21t ](k,m)t = −
∫

dt [e−k21t ](k)t [1](m)t

= 1

4
ln

(
1 + 1t

t

) (
1

1t
− 1

3 + 7
301t

)
− 4

45(t + α11t)+ · · · (82)

[e−εm1t ](k,m)t = 1

4
ln

(
1 + 1t

t

) (
1

1t
+ 1

3 + 7
301t

)
− 4

45(t + α21t)+ · · · . (83)

Here, α1 and α2 are two undetermined constants. However, adding (82) and (83) and
expanding both sides for small1t we find the constraintα1 + α2 = 1. It turns out that our
final result does not depend on the single remaining unknown constant and we obtain from
(74)–(83)

(−∂t )〈δg(t)δg(t +1t)〉 ' − 2

15

1t

t2

1

(1 +1t/t)3
= − 1

15
∂t

(
1

(1 +1t/t)2

)
. (84)

The result (58) follows immediately upon integrating this last relation. In principle we
still have to worry about an integration constant that might depend on1t . However, this
constant must vanish for1t = 0 due to (67) and possible higher-order terms are at least
O(1t) = O(t).

6. Localized regime

In this section we derive the fact that fort = L/2ξ � 1 (localized regime) but arbitrary
channel numberN the conductance length correlation function depends exponentially on
both t and1t .

In the limit t � 1 only the term withm = 0 and the region of smallk contribute
significantly to expression (52). This observation simplifies (53) enormously. Since
[. . .](k,m)t ∼ e−t we can neglect higher powers of this symbol and withS2(0,1t) = 0
we get

〈δg(t)δg(t +1t)〉 ' [S1(k,1t)e−εm1t ](k,m)t ' 〈δg2(t)〉4S1(0,1t)e−1t . (85)

Here, we have used the fact that〈δg(t)2〉 ≈ 1
4[k2 + εm](k,m)t ≈ 1

4[1](k,m)t (see (64)) in
the localized limit. The average〈δg(t)2〉 can be calculated by means of a saddle-point
approximation to give

〈δg2(t)〉 ' a(N, 0, 0) 1
16π

3/2t−3/2 e−t . (86)

For a(N, 0, 0) we have from (50)

a(N, 0, 0) = 0(N + 1
2)

2

0(N)0(N + 1)
= π

2

(2N)!(2N − 1)!

42N−1[(N − 1)!N !] 2
. (87)

The function 4S1(0,1t) can in general (i.e. for arbitrary1t) only be evaluated numerically.
In the limiting cases1t � 1 and1t � 1 the following approximations can be derived

4S1(0,1t) '
{

1 − 5
41t + 7

4(1t)
2 + · · · (1t � 1)

I (0, 0) 1
4π

3/2(1t)−3/2 (1t � 1)
(88)

whereI (0, 0) = 14ζ(3)/π2 ' 1.705 is given by the integral (56) atk = k̃ = 0. A particular
consequence of our results is the very symmetric expression

〈δg(t)δg(t +1t)〉 = constant(1t)−3/2t−3/2 e−1t e−t (89)

for t, 1t � 1.
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7. Crossover regime

To describe the crossover behaviour of the conductance length correlation function between
the metallic and the localized regime (in botht and1t) we have to rely on a numerical
evaluation of (53). We have already mentioned earlier that the key quantityI (k, k̃) (56) is
difficult to calculate as it stands and that in appendix C a more suitable expression (as far
as a numerical treatment is concerned) is derived.

In all the computations reported here we have set the channel numberN to infinity. Let
us define the quantity

K(t,1t) = 〈δg(t)δg(t +1t)〉
〈δg(t)δg(t)〉

(
1 + 1t

t

)2

. (90)

Obviously, this is the conductance length correlation function normalized to its value at
1t = 0 and multiplied by the inverse of the squared Lorentzian (58) to compensate for the
‘trivial’ metallic behaviour. By definition,K(t,1t) should be a constant equal to unity for
t � 1 and not too large1t . As1t increases localization effects must show up and for large
1t � 1 we expect an exponential decay ofK(t = constant� 1,1t). For increasingt , on
the other hand, we expect the compensation factor(1 +1t/t)2 to become ineffective even
for small1t sinceK(t = constant,1t) should decay exponentially rather than algebraically
for t � 1. In figure 1 we have plottedK(t,1t) as a function of1t for t = 0.1, 0.2, 0.5,
1.0 and 5.0. Clearly, our exceptions are borne out. However, there is one intriguing and
unforeseen feature. The curveK(t = 0.1,1t) bears as a function of1t striking similarities
to the behaviour of the variance〈δg(t)δg(t)〉 of the conductance in the unitary case. This
observation suggests that (58) remains true if we replace the numerical prefactor1

15 by the
full function 〈δg(1t)δg(1t)〉, i.e.

〈δg(t)δg(t +1t)〉 = 〈δg(1t)δg(1t)〉
(1 +1t/t)2

+ O(t). (91)

We have not tried to prove this relation analytically and a numerical verification turns out to
be difficult since we cannot go easily tot values smaller than 0.1. Therefore (91) remains
an interesting speculation for the time being.

Next, to characterize the distance over which two conductances are correlated, we have
determined the point(1t)1/e such that〈δg(t)δg(t + (1t)1/e)〉 = 〈δg(t)δg(t)〉/e. In figure 2
we have plotted(1t)1/e as a function oft . We see that the curve starts with a linear
behaviour(1t)1/e ∼ t for t < 1 and then saturates at(1t)1/e ≈ 0.5 for t � 1. This is
exactly what we expect from the limiting cases worked out in sections 5 and 6. In the
metallic regime the decay scale is set by the system length itself, see (58). This is also
dictated by the universality of the conductance fluctuations. There can be no intrinsic length
scale other than the system length. In the localized regime, however, we have the asymptotic
expression (89) and the situation changes. The exponential function, of course, does decay
on a typical intrinsic scale. Since1t = 1L/2ξ and the curve in figure 2 saturates at
(1t)1/e ≈ 0.5 we see explicitly that the wire is divided into independent segments of sizeξ .

8. Summary and conclusions

Employing techniques that have recently been developed to calculate the transport properties
of a quasi 1D wire in the Fokker–Planck approach we have derived expression (53) for
the conductance length correlation function〈δg(t)δg(t + 1t)〉. In the metallic regime
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Figure 1. The functionK(t,1t) as defined in the text against1t . The curves correspond from
top to bottom tot = 0.1 (full), t = 0.2 (dotted),t = 0.5 (dashed),t = 1.0 (long dashes), and
t = 5.0 (dash-dotted).

(t � 1,1t < 1, N → ∞) we found a squared Lorentzian

〈δg(t)δg(t +1t)〉 = 1

15

1

(1 +1t/t)2
+ O(t) (58)

while in the localized regime(t,1t � 1) the correlation function is dominated by
exponential tails,

〈δg(t)δg(t +1t)〉 = constant(1t)−3/2t−3/2 e−1t e−t . (89)

For intermediate values oft and1t we had to restrict ourselves to a numerical evaluation
of the various sums and integrals in (53). Figures 1 and 2 show the crossover from the
metallic to the localized regime both in the typical dependence on1t and in the dependence
of the correlation width(1t)1/e on t . The latter quantity is proportional tot in the metallic
regime and saturates at(1t)1/e ≈ 0.5 (i.e.1L ≈ ξ ) in the localized regime.

Equation (58) generalizes the celebrated universality of the conductance fluctuations to
the case of the length correlation function. As long as the ratio1t/t is constant the absolute
length of the system does not matter. The result also shows that any rearrangement in the
wire (of the disorder potential, say) affects the full system since the correlation width is given
by the system length. Figure 2 proves that this changes drastically in the localized case.
As the system size exceeds the localization lengthξ , the correlation length no longer grows
with t but saturates at1L ≈ ξ . This demonstrates explicitly that the wire is decomposed
into statistically independent segments of sizeξ . As a consequence, moving one impurity
no longer changes the statistical properties of the whole wire but affects only the relevant
segment. From this result one can deduce [8] that the conductance fluctuations〈[ln g/g′]2〉
in a quasi 1D wire in the localized regime are universal and of order unity.
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Figure 2. The decay width(1t)1/e of the length correlation function against the system lengtht .
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Appendix A. Proof of (40)

From definition (13) it is clear that we have to demonstrate that

1

1 + λ
Pm(1 + 2λ) = (−1)m

(
1

1 + λ
+

m−1∑
l=0

amlPl(1 + 2λ)

)
(A1)

in order to prove (40). SincePm(1 + 2λ) is a polynomial of degreem in the variable
1 + λ an expansion of the form (A1) must exist. The coefficientsaml can be calculated
as follows. With the help of the orthogonality relation for the Legendre polynomials,∫ 1
−1 dxPn(x)Pm(x) = δnm2/(1 + 2n), we get for theaml (x corresponds to 1− 2(1 + λ))

aml = (−1)l(1 + 2l)
∫ 1

−1
dx

1

1 − x
(Pm(x)− 1)Pl(x). (A2)

This integral vanishes form 6 l. Form > l and using(Pm(x)− 1)Pl(x) = (Pm(x)− 1)−
(Pl(x)− 1)+ Pm(x)(Pl(x)− 1) we find

am = (−1)l(1 + 2l)(bm − bl) (A3)
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with

bm =
∫ 1

−1
dx
Pm(x)− 1

1 − x
. (A4)

Applying the recurrence relation for the Legendre polynomials,(2m + 1)xPm(x) =
(m+ 1)Pm+1(x)+mPm−1(x), we obtain the equation

bm+1 − bm = −2δm,0 + m

m+ 1
(bm − bm−1) (A5)

which has the solution

bm = −2
m∑
ν=1

1

ν
. (A6)

Together with (A2) this gives precisely the value foraml claimed in (40).

Appendix B. The integral (49)

In this appendix, we calculate the integral (49) for arbitrary complex values ofα with
Re(α) > 1

2. Using (10) and formula 15.3.4 of [13] we get

ψk(λ) = F( 1
2 − i 1

2k,
1
2 + i 1

2k; 1; −λ) = (1 + λ)(−1+ik)/2F( 1
2 − i 1

2k; 1
2 − i 1

2k; 1; λ/(1 + λ)).

(B1)

Substitutings = (1 + λ)−1 and expanding the hypergeometric series the left-hand side of
(49) becomes
∞∑
n=0

( 1
2 − i 1

2k)
2
n

n!2

∫ 1

0
dss−3/2−ik/2+α(1 − s)n

=
∞∑
n=0

( 1
2 − i 1

2k)
2
n

n!2

0(− 1
2 − i 1

2k + α)0(n+ 1)

0( 1
2 − i 1

2k + α + n)
. (B2)

Here,(a)n = a(a+1) · · · (a+n−1) = 0(a+n)/0(a) is the Pochhammer symbol [13]. The
evaluation of the integral involves theβ-function [13]. The sum in (B2) can be expressed
as a certain hypergeometric function at the special valuez = 1 and we can write for the
right-hand side of (B2)

0(− 1
2 − i 1

2k + α)

0( 1
2 − i 1

2k + α)

∞∑
n=0

( 1
2 − i 1

2k)
2
n

n!( 1
2 − i 1

2k + α)n

= 0(− 1
2 − i 1

2k + α)

0( 1
2 − i 1

2k + α)
F ( 1

2 − i 1
2k,

1
2 − i 1

2k; 1
2 − i 1

2k + α; 1). (B3)

Using formula 15.1.20 of [13] we finally obtain the right-hand side of equation (49).

Appendix C. The integral (56)

We derive an expression forI (k, k̃) defined in (56) that is suitable for a numerical evaluation.
Applying the transformation formula 15.3.8 of [13] we have

ψk(µ) = 0(ik)

0( 1
2 + i k2)

2
(1 + µ)(−1+ik)/2F( 1

2 − i 1
2k,

1
2 − i 1

2k; 1 − ik; 1/(1 + µ))+ (k ↔ −k).

(C1)
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We expand the hypergeometric function in (C1) and replace the firstψk(µ) in (56) by the
resulting sum. For each term in the sum theµ integration can be done by using the integral
(49) derived in the previous appendix. After some simplification the result forI (k, k̃) reads

I (k, k̃) = 0(ik)0(1 − 1
2i(k + k̃))0(1 − 1

2i(k − k̃))

0( 1
2 + i 1

2k)
20( 1

2 − i 1
2k)

2

×
∞∑
n=0

(1 − 1
2i(k + k̃))n(1 − 1

2i(k − k̃))n

n!(1 − ik)n

1

( 1
2 − i 1

2k + n)2
+ (k ↔ −k). (C2)

We cannot proceed along the lines of appendix B to evaluate the sum in (C2) due to the
presence of the extra factor(z + n)−2 (with z = 1

2 − i 1
2k). A direct numerical summation,

on the other hand, is inefficient since the sum converges only liken−2. However, the
convergence can be substantially improved by the expansion

1

(z + n)2
=

m∑
ν=2

Cν(z)

(2z + n)ν
+ Am(z)

(z + n)2(2z + n)m−1
+ Bm(z)

(z + n)2(2z + n)m
. (C3)

The coefficientsCν(z), Am(z), Bm(z) depend onz but not onn and can be determined by a
suitable recurrence relation. The contributions involvingCν(z) can be summed analytically
by identifying (as in appendix B) a hypergeometric functionF(., .; .; 1). The remaining
terms withAm(z) (Bm(z)) behave as∼ n−(1+m) (∼ n−(2+m)). Choosingm = 10–20 the
corresponding sums converge rapidly.

Appendix D. Expansion of (62) and (63)

This appendix deals with the expansion (in powers oft) of

[1](k)t =
∫ ∞

0
dk k tanh( 1

2πk) e−k2t (D1)

[1](m)t =
∞∑
0

2(1 + 2m) e−(1+2m)2t (D2)

in the limit t � 1. Expanding tanh( 1
2πk) in terms of exponential functions we obtain

[1](k)t =
∫ ∞

0
dk k

(
1 − 2

∞∑
n=0

(−1)n e−(1+n)πk
)

e−k2t

= 1

2t
− 2

∞∑
n=0

(−1)n
∫ ∞

0
dk k e−(1+n)πk

∞∑
m=0

(−1)mtm

m!
k2m

= 1

2t
− 2

∞∑
m=0

(−1)mtm

m!

(1 + 2m)!

π2(m+1)

∞∑
n=0

(−1)n
1

(n+ 1)2(m+1)

= 1

2t
− 2

∞∑
m=0

(−1)mtm

m!

(1 + 2m)!

π2(m+1)

(
1 − 1

22m+1

)
ζ(2m+ 2)

= 1

2t

(
1 +

∞∑
m=1

[
(−1)m2(22m−1 − 1)

m!
|B2m|

]
tm

)
. (D3)

In the last step we have used thatζ(2m) = (2π)2m|B2m|/[2(2m)!], where theB2m denote
the Bernoulli numbers [13]. WithB2 = 1

6 andB4 = − 1
30 we find the first three terms in

(62).
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In order to treat the discrete sum (D2) we decouple the quadratic term in the exponent
by a Gaussian integral:

[1](m)t = lim
η→0+

1√
πt

∫ ∞

−∞
ds e−s2/t

∞∑
m=0

2(1 + 2m) e(1+2m)(2is−η)

= lim
η→0+

1√
πt

∫ ∞

−∞
ds e−s2/t 1

2
∂s

(
1

sin(2s + iη)

)
= lim

η→0+
1

2t
√
πt

∫ ∞

−∞
ds

2s

sin(2s + iη)
e−s2/t . (D4)

In the limit η → 0+, the integrand hasδ-function contributions ats = 1
2πn, wheren 6= 0

is an integer. These lead to the non-analytic corrections∼ e−π2n2/(4t), which we will
neglect in the following. The analytic corrections arise from smalls contributions in the
integral. Expanding(2s)/ sin(2s) in a power series (formula 4.3.68 of [13]) and evaluating
the Gaussian integrals we arrive at

[1](t)m = 1

2t

∞∑
m=0

[
(−1)m−12(22m−1 − 1)

m!
B2m

]
tm + O(e−π2/(4t)). (D5)

Remarkably, the coefficients differ only by the sign(−1)m from those in (D3). Again, the
first three terms yield (63).

Appendix E. Calculation of the coefficients (71)

In order to expandS1(k,1t) we exploit the fact that theλ-integration in (54) can be viewed
as the formal application of the operator exp[−D(µ)1t ] on (1 + µ)−1 (with D(µ) as in
(8)):∫ ∞

0
dλ g(µ, λ;1t) 1

1 + λ
= e−D(µ)1t

(
1

1 + µ

)
=

∞∑
n=0

(1t)n

n!
[−D(µ)]n

(
1

1 + µ

)
=

∞∑
n=0

(1t)n

n!
Rn(µ). (E1)

Here,Rn(µ) = [−D(µ)]n(1 + µ)−1 is a polynomial of degreen+ 1 in (1 + µ)−1, i.e. we
may write

Rn(µ) =
n∑
l=0

rn,l(1 + µ)−(l+1) (E2)

where the coefficientrn,l obeys the recurrence relation

rn+1,l = −4l2rn,l−1 + (2l + 1)2rn,l (E3)

with r0,k = δ0,k. To calculate the coefficientsan, bn, cn in (70), we need the value ofrn,n,
rn,n−1, andrn,n−2. From (E3) we find

rn,n = (−4)nn!2

rn,n−1 = (−4)n−1(n− 1)!2
n−1∑
ν=0

(1 + 2ν)2 (E4)

rn,n−2 = (−4)n−2(n− 2)!2
n−2∑
ν=0

(1 + 2ν)2
ν∑
ν̃=0

(1 + 2ν̃)2. (E5)
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On the other hand, we may insert (E1) and (E2) in (54) and perform theµ integration using
(49), giving

S1(k,1t) =
∞∑
n=0

(1t)n

n!

n∑
l=0

rn,l
1

(l + 1)!2

l∏
ν=0

(( 1
2 + ν − i 1

2k)(
1
2 + ν + i 1

2k)). (E6)

The product is a polynomial of degree(l + 1) in k2, of which we need the first three terms

l∏
ν=0

(( 1
2 + ν − i 1

2k)(
1
2 + ν + i 1

2k)) = 1

4l+1

l∏
ν=0

(k2 + (1 + 2ν)2)

= 1

4l+1
((k2)l+1 + Al(k

2)l + Bl(k
2)l−1 + · · ·) (E7)

with

Al =
l∑

ν=0

(1 + 2ν)2 Bl =
∑

06ν<ν̃6l
(1 + 2ν)2(1 + 2ν̃)2. (E8)

Together, (E6) and (E7) imply

an = (−1)n+1

4n+1(n+ 1)!2
rn,n

bn = (−1)n+1

4n+1(n+ 1)!2
rn,nAn + (−1)n

4nn!2
rn,n−1 (E9)

cn = (−1)n+1

4n+1(n+ 1)!2
rn,nBn + (−1)n

4nn!2
rn,n−1An + (−1)n−1

4n−1(n− 1)!2
rn,n−2

for the desired coefficients. Combining (E4), (E8), and (E9), one indeed obtains after some
(computer-)algebra the result (71). It remains to show thatS2(m,1t) is given by (69) with
the samecoefficients (71). Expanding (55) we find

S2(m,1t) =
∞∑
n=0

(−1t)n
n!

(−2)Cn(m) (E10)

with

Cn(m) =
m∑
ν=1

1

ν

ν−1∑
l=0

(1 + 2l)1+2n. (E11)

For smalln theCn(m) can be calculated with help of standard mathematical formulae. For
our purposes, however, we need the large-m behaviour for alln. Therefore we consider the
generating function

g(m, x) =
m∑
ν=1

1

ν

ν−1∑
l=0

sinh[(1 + 2l)x] =
∞∑
n=0

x1+2n

(1 + 2n)!
Cn(m). (E12)

Using (twice) the finite geometric series we can derive the inhomogeneous differential
equation

sinh(2x)g(m, x)+ (cosh(2x)− 1)∂xg(m, x) = cosh[(1 + 2m)x] − coshx (E13)

from which we get the recurrence relation

Cn(m) = 1

bnn

(
εn+1
m − 1 −

n−1∑
k=0

bnkCk(m)

)
(E14)
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with

bnk = n+ k + 2

2n+ 3

(
2n+ 3
2k + 1

)
22(n−k+1). (E15)

Equation (E14) indeed gives after some algebra

(−2)Cn(m) = anε
n+1
m + bnε

n
m + cnε

n−1
m + · · · (E16)

with an, bn, cn as in (71).
We conclude this appendix with a short remark. Equations (68) and (69) suggest

that the functionsS1(k,1t) and S2(m,1t) are connected by the analytic replacement
−k2 → εm = (1 + 2m)2 and1t → −1t . We have verified this for the lowest(n 6 2)
polynomialsrn+1(z) and—as far as the highest coefficientsan, bn, cn appearing in (70) are
concerned—for alln. This is sufficient for the purpose of the present paper. A general
proof, however, has yet to be given.
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